Trigonometry in right-angled triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Key points

- In a right-angled triangle:
 - the side opposite the right angle is called the hypotenuse
 - the side opposite the angle θ is called the opposite
 - the side next to the angle θ is called the adjacent.

- In a right-angled triangle:
 - the ratio of the opposite side to the hypotenuse is the sine of angle θ , $\sin \theta = \frac{\text{opp}}{\text{hyp}}$
 - the ratio of the adjacent side to the hypotenuse is the cosine of angle θ , $\cos \theta = \frac{\text{adj}}{\text{hyp}}$
 - the ratio of the opposite side to the adjacent side is the tangent of angle θ , $\tan \theta = \frac{\text{opp}}{\text{adj}}$
- If the lengths of two sides of a right-angled triangle are given, you can find a missing angle using the inverse trigonometric functions: sin⁻¹, cos⁻¹, tan⁻¹.
- The sine, cosine and tangent of some angles may be written exactly.

	0	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

Examples

Example 1

Calculate the length of side *x*. Give your answer correct to 3 significant figures.

Example 2Calculate the size of angle x.Give your answer correct to 3 significant figures.

Example 3 Calculate the exact size of angle *x*.

Practice

1 Calculate the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

2 Calculate the size of angle *x* in each triangle. Give your answers correct to 1 decimal place.

3 Work out the height of the isosceles triangle. Give your answer correct to 3 significant figures.

Hint:

Split the triangle into two right-angled triangles.

4 Calculate the size of angle θ . Give your answer correct to 1 decimal place.

Hint:

First work out the length of the common side to both triangles, leaving your answer in surd form.

5 Find the exact value of x in each triangle.

x

The cosine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs Textbook: Pure Year 1, 9.1 The cosine rule

Key points

• *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.

- You can use the cosine rule to find the length of a side when two sides and the included angle are given.
- To calculate an unknown side use the formula $a^2 = b^2 + c^2 2bc \cos A$.
- Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given.
- To calculate an unknown angle use the formula $\cos A = \frac{b^2 + c^2 a^2}{2bc}$.

Examples

Example 4Work out the length of side w.Give your answer correct to 3 significant figures.

Example 5 Work out the size of angle θ . Give your answer correct to 1 decimal place.

Practice

6 Work out the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

7 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.

- 8 a Work out the length of WY. Give your answer correct to 3 significant figures.
 - **b** Work out the size of angle WXY. Give your answer correct to 1 decimal place.

The sine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs **Textbook:** Pure Year 1, 9.2 The sine rule

Key points

• *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.

- You can use the sine rule to find the length of a side when its opposite angle and another opposite side and angle are given.
- To calculate an unknown side use the formula $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.
- Alternatively, you can use the sine rule to find an unknown angle if the opposite side and another opposite side and angle are given.
- To calculate an unknown angle use the formula $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.

759

в

Examples

Example 6 Work out the length of side *x*. Give your answer correct to 3 significant figures.

10 cm

36°

а

 $\sin A$

х

b

sin B

 $\overline{\sin 36^\circ} = \overline{\sin 75^\circ}$

 $x = \frac{10 \times \sin 36^{\circ}}{\sin 75^{\circ}}$

x = 6.09 cm

10

- 1 Always start by labelling the angles and sides.
- 2 Write the sine rule to find the side.
- **3** Substitute the values *a*, *b*, *A* and *B* into the formula.
- 4 Rearrange to make *x* the subject.
- **5** Round your answer to 3 significant figures and write the units in your answer.

Example 7Work out the size of angle θ .
Give your answer correct to 1 decimal place.

b

d

Practice

a

с

9 Find the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

10 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.

- **11 a** Work out the length of QS. Give your answer correct to 3 significant figures.
 - **b** Work out the size of angle RQS. Give your answer correct to 1 decimal place.

Areas of triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs **Textbook:** Pure Year 1, 9.3 Areas of triangles

Key points

- *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.
- The area of the triangle is $\frac{1}{2}ab\sin C$.

Examples

Example 8 Find the area of the triangle.

Practice

12 Work out the area of each triangle. Give your answers correct to 3 significant figures.

13 The area of triangle XYZ is 13.3 cm^2 . Work out the length of XZ.

Hint:

Rearrange the formula to make a side the subject.

Extend

- 14 Find the size of each lettered angle or side. Give your answers correct to 3 significant figures.
 - a

For each one, decide whether to use the cosine or sine rule.

b

c

38 mm (20° 95 mm

15 The area of triangle ABC is 86.7 cm². Work out the length of BC. Give your answer correct to 3 significant figures.

d

Answers

1	a d	6.49 cm 74.3 mm	b e	6.93 cm 7.39 cm	c f	2.80 cm 6.07 cm			
2	a	36.9°	b	57.1°	c	47.0°	d	38.7°	
3	5.71	cm							
4	20.4°								
5	a	45°	b	1 cm	c	30°	d	$\sqrt{3}$ cm	
6	a	6.46 cm	b	9.26 cm	c	70.8 mm	d	9.70 cm	
7	a	22.2°	b	52.9°	c	122.9°	d	93.6°	
8	a	13.7 cm	b	76.0°					
9	a	4.33 cm	b	15.0 cm	c	45.2 mm	d	6.39 cm	
10	a	42.8°	b	52.8°	c	53.6°	d	28.2°	
11	a	8.13 cm	b	32.3°					
12	a	18.1 cm^2	b	18.7 cm^2	c	693 mm ²			
13	5.10 cm								
14	a	6.29 cm	b	84.3°	c	5.73 cm	d	58.8°	

15 15.3 cm

