## Surds and rationalising the denominator

#### A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

### Key points

- A surd is the square root of a number that is not a square number, for example  $\sqrt{2}, \sqrt{3}, \sqrt{5}$ , etc.
- Surds can be used to give the exact value for an answer.

• 
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

- $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise  $\frac{a}{\sqrt{b}}$  you multiply the numerator and denominator by the surd  $\sqrt{b}$
- To rationalise  $\frac{a}{b+\sqrt{c}}$  you multiply the numerator and denominator by  $b-\sqrt{c}$

#### Examples

**Example 1** Simplify  $\sqrt{50}$ 

| $\sqrt{50} = \sqrt{25 \times 2}$ | 1 Choose two numbers that are factors of 50. One of the factors must be a square number |
|----------------------------------|-----------------------------------------------------------------------------------------|
| $=\sqrt{25} \times \sqrt{2}$     | 2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$                                   |
| $=5 \times \sqrt{2}$             | <b>3</b> Use $\sqrt{25} = 5$                                                            |
| $=5\sqrt{2}$                     |                                                                                         |
|                                  |                                                                                         |

**Example 2** Simplify  $\sqrt{147} - 2\sqrt{12}$ 

| $\sqrt{147} - 2\sqrt{12}$ $= \sqrt{49 \times 3} - 2\sqrt{4 \times 3}$ | 1 Simplify $\sqrt{147}$ and $2\sqrt{12}$ . Choose<br>two numbers that are factors of 147<br>and two numbers that are factors of<br>12. One of each pair of factors must<br>be a square number |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $=\sqrt{49}\times\sqrt{3}-2\sqrt{4}\times\sqrt{3}$                    | 2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$                                                                                                                                         |
| $=7\times\sqrt{3}-2\times2\times\sqrt{3}$                             | <b>3</b> Use $\sqrt{49} = 7$ and $\sqrt{4} = 2$                                                                                                                                               |
| $= 7\sqrt{3} - 4\sqrt{3}$ $= 3\sqrt{3}$                               | 4 Collect like terms                                                                                                                                                                          |





| Example 3 | Simplify $\left(\sqrt{7} + \sqrt{2}\right)\left(\sqrt{7} - \sqrt{2}\right)$                                                          |                                                                                                              |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
|           | $ \left(\sqrt{7} + \sqrt{2}\right)\left(\sqrt{7} - \sqrt{2}\right) $ $= \sqrt{49} - \sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7} - \sqrt{4} $ | 1 Expand the brackets. A common mistake here is to write $(\sqrt{7})^2 = 49$                                 |  |
|           | = 7 - 2<br>= 5                                                                                                                       | 2 Collect like terms:<br>$-\sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7}$ $= -\sqrt{7}\sqrt{2} + \sqrt{7}\sqrt{2} = 0$ |  |

**Example 4** Rationalise 
$$\frac{1}{\sqrt{3}}$$

| $\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$ | 1 Multiply the numerator and denominator by $\sqrt{3}$ |
|----------------------------------------------------------------------------|--------------------------------------------------------|
| $=\frac{1\times\sqrt{3}}{\sqrt{9}}$                                        | 2 Use $\sqrt{9} = 3$                                   |
| $=\frac{\sqrt{3}}{3}$                                                      |                                                        |

| Example 5 | Rationalise and simplify $\frac{\sqrt{2}}{\sqrt{12}}$                                        |                                                                                                                                   |
|-----------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|           | $\frac{\sqrt{2}}{\sqrt{12}} = \frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$ | 1 Multiply the numerator and denominator by $\sqrt{12}$                                                                           |
|           | $= \frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$                                             | 2 Simplify $\sqrt{12}$ in the numerator.<br>Choose two numbers that are factors of 12. One of the factors must be a square number |
|           | $=\frac{2\sqrt{2}\sqrt{3}}{12}$                                                              | 3 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$<br>4 Use $\sqrt{4} = 2$                                                     |
|           | $=\frac{\sqrt{2}\sqrt{3}}{6}$                                                                | 5 Simplify the fraction:<br>$\frac{2}{12}$ simplifies to $\frac{1}{6}$                                                            |



| Example 6 | Rationalise and simplify $\frac{3}{2+\sqrt{5}}$                                                                                       |   |                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------|
|           | $\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$                                                    | 1 | Multiply the numerator and denominator by $2 - \sqrt{5}$                                          |
|           | $\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$ $= \frac{3(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})}$ | 2 | Expand the brackets                                                                               |
|           | $= \frac{6 - 3\sqrt{5}}{4 + 2\sqrt{5} - 2\sqrt{5} - 5}$ $= \frac{6 - 3\sqrt{5}}{-1}$                                                  | 3 | Simplify the fraction                                                                             |
|           | $= \frac{6-3\sqrt{5}}{-1}$ $= 3\sqrt{5}-6$                                                                                            | 4 | Divide the numerator by $-1$<br>Remember to change the sign of all<br>terms when dividing by $-1$ |

#### Practice

| 1 | Simplify.                | Hint           |                                    |
|---|--------------------------|----------------|------------------------------------|
|   | a $\sqrt{45}$            | b $\sqrt{125}$ | One of the two                     |
|   | $\mathbf{c} = \sqrt{48}$ | d $\sqrt{175}$ | numbers you<br>choose at the start |
|   | $e \sqrt{300}$           | $f \sqrt{28}$  | must be a square                   |
|   | $\mathbf{g} = \sqrt{72}$ | h $\sqrt{162}$ | number.                            |
|   |                          |                |                                    |

| 2 | Simplify. |
|---|-----------|
|---|-----------|

- **a**  $\sqrt{72} + \sqrt{162}$ **c**  $\sqrt{50} - \sqrt{8}$
- e  $2\sqrt{28} + \sqrt{28}$

**b**  $\sqrt{45} - 2\sqrt{5}$  **d**  $\sqrt{75} - \sqrt{48}$ **f**  $2\sqrt{12} - \sqrt{12} + \sqrt{27}$ 

### Watch out!

Check you have chosen the highest square number at the start.

#### **3** Expand and simplify.

- **a**  $(\sqrt{2} + \sqrt{3})(\sqrt{2} \sqrt{3})$
- c  $(4-\sqrt{5})(\sqrt{45}+2)$
- **b**  $(3+\sqrt{3})(5-\sqrt{12})$ **d**  $(5+\sqrt{2})(6-\sqrt{8})$



4 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{5}}$$
b $\frac{1}{\sqrt{11}}$ c $\frac{2}{\sqrt{7}}$ d $\frac{2}{\sqrt{8}}$ e $\frac{2}{\sqrt{2}}$ f $\frac{5}{\sqrt{5}}$ g $\frac{\sqrt{8}}{\sqrt{24}}$ h $\frac{\sqrt{5}}{\sqrt{45}}$ 

**5** Rationalise and simplify.

**a** 
$$\frac{1}{3-\sqrt{5}}$$
 **b**  $\frac{2}{4+\sqrt{3}}$  **c**  $\frac{6}{5-\sqrt{2}}$ 

#### Extend

- 6 Expand and simplify  $\left(\sqrt{x} + \sqrt{y}\right)\left(\sqrt{x} \sqrt{y}\right)$
- 7 Rationalise and simplify, if possible.

**a** 
$$\frac{1}{\sqrt{9}-\sqrt{8}}$$
 **b**  $\frac{1}{\sqrt{x}-\sqrt{y}}$ 



#### Answers

| 1 | a | 3√5                                                       | b | 5√5                          |
|---|---|-----------------------------------------------------------|---|------------------------------|
|   | c | $4\sqrt{3}$                                               | d | 5√7                          |
|   | e | $10\sqrt{3}$                                              | f | 2√7                          |
|   | g | $6\sqrt{2}$                                               | h | $9\sqrt{2}$                  |
| 2 | 9 | $15\sqrt{2}$                                              | h | $\sqrt{5}$                   |
| - |   | $3\sqrt{2}$                                               |   | $\sqrt{3}$                   |
|   |   |                                                           |   |                              |
|   | e | 6√7                                                       | I | $5\sqrt{3}$                  |
| 3 | a | -1                                                        | b | $9 - \sqrt{3}$               |
|   | c | $10\sqrt{5}-7$                                            |   | $26 - 4\sqrt{2}$             |
|   |   |                                                           |   |                              |
| 4 | a | $\frac{\sqrt{5}}{5}$                                      | b | $\frac{\sqrt{11}}{11}$       |
|   | c | $\frac{2\sqrt{7}}{7}$                                     | d | $\frac{\sqrt{2}}{2}$         |
|   | e | $\sqrt{2}$                                                | f | $\sqrt{5}$                   |
|   | g | $5$ $\frac{2\sqrt{7}}{7}$ $\sqrt{2}$ $\frac{\sqrt{3}}{3}$ | h | $\frac{1}{3}$                |
| 5 | a | $\frac{3+\sqrt{5}}{4}$                                    | b | $\frac{2(4-\sqrt{3})}{13}$ c |
| 6 | x | y                                                         |   |                              |

7 **a**  $3 + 2\sqrt{2}$  **b**  $\frac{\sqrt{x} + \sqrt{y}}{x - y}$ 



 $\frac{6(5+\sqrt{2})}{23}$