

GCSE REVISION 18

Calculations 4

Chemsheets GCSE 1282

a) How many moles in 33.0 kg of ammonium sulfate (NH ₄) ₂ SO ₄ .
b) What is the mass of 0.040 moles of oxygen, O ₂ ?
a) What maximum mass of methanol that can be made when 12 g of CO + 2H₂ → CH₃OH hydrogen reacts with an excess of carbon monoxide?
b) In a reaction, 60 g of methanol was formed from 12 g of hydrogen. Calculate the percentage yield.
Calculate the percentage atom economy to make iron from iron(III) $Fe_2O_3 + 3CO \rightarrow 2Fe + 2CO_2$ oxide by reaction with carbon monoxide.
What volume of hydrogen gas is formed, measured at room temperature $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ and pressure, when 0.65 g of zinc reacts with sulfuric acid?
What volume of carbon dioxide gas is formed when 100 cm 3 of $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ propane gas burns (both gases are at room temperature and pressure)?

	equation for the re			and use it to find the fo	nnuia	01 1110	un chloride. Tillally, v	viile a b	
7)	Lead reacts with chlorine to form lead(II) chloride. When 6.21 g of lead reacts with 2.84 g of chlorine, which is the limiting reagent and what mass of lead(II) chloride is formed? Pb + $Cl_2 \rightarrow PbCl_2$								
8)	Find the concentration of oxalic acid $(H_2C_2O_4)$ in mol/dm ³ and g/dm ³ given that 25.0 cm ³ of this solution reacts with 22.8 cm ³ 0.100 mol/dm ³ sodium hydroxide solution in a titration.								
8)	Find the concenture g/dm³ given that 0.100 mol/dm³ so	ration o 25.0 cm dium h	f oxalic n ³ of thi ydroxid	acid (H ₂ C ₂ O ₄) in mol/dissipation reacts with 22 esolution in a titration.	m³ and 2.8 cm³	H ₂ C	$S_2O_4 + 2NaOH \rightarrow Na_2 C$	C ₂ O ₄ + 2	2H₂O
8)	Find the concenture g/dm³ given that 0.100 mol/dm³ so	ration o 25.0 cn dium h	f oxalic n³ of thi ydroxid	acid (H ₂ C ₂ O ₄) in mol/dissipation reacts with 22 esolution in a titration.	m ³ and 2.8 cm ³	H ₂ C	$C_2O_4 + 2NaOH \rightarrow Na_2 C$	C ₂ O ₄ + 2	PH₂O
8)	Find the concentre g/dm³ given that to 0.100 mol/dm³ so	ration o 25.0 cn dium h	f oxalic 1 ³ of thi ydroxid	acid (H ₂ C ₂ O ₄) in mol/dissipation reacts with 22 esolution in a titration.	m ³ and 2.8 cm ³	H ₂ C	C ₂ O ₄ + 2NaOH → Na ₂ C	C ₂ O ₄ + 2	2H2O
8)	Find the concentre g/dm³ given that 0.100 mol/dm³ so	ration o 25.0 cm odium h	f oxalic n³ of thi ydroxid	acid (H ₂ C ₂ O ₄) in mol/dissipation reacts with 22 esolution in a titration.	m ³ and 2.8 cm ³	H ₂ C	5 ₂ O ₄ + 2NaOH → Na ₂ C	Ç ₂ O ₄ + 2	2H₂O
8)	Find the concentre g/dm³ given that to 0.100 mol/dm³ so	ration o 25.0 cm dium h	f oxalic	acid (H ₂ C ₂ O ₄) in mol/dissipation reacts with 22 esolution in a titration.	m ³ and 2.8 cm ³	H ₂ C	C ₂ O ₄ + 2NaOH → Na ₂ C	C ₂ O ₄ + 2	2H ₂ O
8)	Find the concentre g/dm³ given that 0.100 mol/dm³ so	ration o 25.0 cm odium h	f oxalic	acid (H ₂ C ₂ O ₄) in mol/dissolution reacts with 22 e solution in a titration.	m ³ and 2.8 cm ³	H ₂ C	S ₂ O ₄ + 2NaOH → Na ₂ C	C ₂ O ₄ + 2	2H ₂ O
8)	Find the concentre g/dm³ given that to 0.100 mol/dm³ so	ration o 25.0 cm dium h	f oxalic	acid (H ₂ C ₂ O ₄) in mol/di s solution reacts with 22 e solution in a titration.	m ³ and 2.8 cm ³	H ₂ C	S ₂ O ₄ + 2NaOH → Na ₂ C	C ₂ O ₄ + 2	2H ₂ O
	Find the concentum g/dm³ given that to 0.100 mol/dm³ so	dium h	f oxalic	e solution in a titration.	m ³ and 2.8 cm ³	H ₂ C		Strength	2H₂O
л	Find the concentum g/dm³ given that the concentum of the	dium h	ydroxid	e solution in a titration.					
Area Oone w	0.100 mol/dm³ so	dium h	ydroxid	e solution in a titration.			Area		
Shows	0.100 mol/dm³ so	dium h	ydroxid	Area Can work out % atom economy			Area Understands limiting reagents		
Area Done w Shows	vith care and thoroughness	dium h	ydroxid	Area Can work out % atom economy Can work out % yield Understands why yield < 100% Work out gas volume from mass or mol			Area Understands limiting reagents Work out moles for solutions		
Area Done w Shows Can wo Work or	vith care and thoroughness suitable working ork out Mr	dium h	ydroxid	Area Can work out % atom economy Can work out % yield Understands why yield < 100%			Area Understands limiting reagents Work out moles for solutions Convert mol/dm³ to g/dm³		