

GCSE REVISION 9

Calculations 2

1		Give the formula of the following ionic substances.								
	a)	a) aluminium chloride d) cal	cium nitrate							
	b)	b) potassium sulfide e) ma	gnesium hydroxide							
	c)	c) sodium sulfate f) iron	n(II) oxide							
2		Calculate the relative formula mass of the following substances.								
	a)	a) fluorine, F ₂								
	b)	b) iron(III) nitrate, Fe(NO ₃) ₃								
3		Calcium oxide is made from the thermal decomposition	n of calcium carbonate: $CaCO_3 \rightarrow CaO + CO_2$							
	a)	Calculate the maximum mass of calcium oxide that could be formed from heating 500 g of calcium carbonate.								
	b)	In a reaction, 250 g of calcium oxide was formed from heating 500 g of calcium carbonate. Calculate the percentage yield for this reaction.								
	c)	c) Suggest two reasons why the yield was less than 1009								
		2								
	d)	Calculate the atom economy to make calcium oxide from calcium carbonate by this reaction.								
4		What mass of oxygen reacts with 270 g of aluminium?	$4Al + 3O_2 \rightarrow 2Al_2O_3$							

5		Calculate the volume of the following gases at room temperature and pressure.											
	a)	3 moles of oxygen, O ₂											
	b)	22 g of carbon dioxide, CO ₂											
6		What volume of hydrogen gas is needed to react with 10 dm ³ of nitrogen to make ammonia, with the volume of all gases measured at the same temperature and pressure?											
		$N_2 + 3H_2 \rightarrow 2NH_3$											
7		5.6 g of iron (Fe) reacts with 24 g of bromine (Br ₂) to make a compound containing iron and bromine only Calculate the moles of iron and bromine and use this to determine the balanced equation for the reaction.											
8		25.0 cm 3 of a solution of citric acid, which is represented by H_3T in the equation, reacted with 26.4 cm 3 of 0.100 mol dm 3 sodium hydroxide solution in a titration. $H_3T + 3NaOH \rightarrow Na_3T + 3H_2O$											
	a)	Calculate the	answer to 3 significant fi	gures.									
	c)	Calculate the concentration of the citric acid in g/dm ³ . The relative formula mass of citric acid is 226. Give your answer to 3 significant figures.											
			la			l	l	1.	a	l			
Area	th a-	and therewake	Strength	To develop		Strength	To develop		Strength	To develop			
		e and thoroughness			Can work out mass from moles			Deduce molar reacting ratio from mass					
Shows suitable working				Can work out % atom economy			Work out moles for solutions						
Can write ionic formulae				Can work out % yield			Convert mol/dm³ to g/dm³						
Can work out Mr				Understands why yield < 100%			Does not round too much						
		es from mass			Work out gas volume from mass or mol			Can use sig figs					
Use equation to find reacting moles					Understands reacting gas volumes	<u> </u>		Gives units					