

GCSE REVISION 6

Formulae, equations, particles, structure & bonding

L. N		odium sulfate					c) ammonium bromide					
b)	iron(III) oxide	d) aluminium nitrate										
	Write balance	d equations	for the follo	owing equa	tions.							
a)	$Na + O_2 \rightarrow Na_2O$											
b)	magnesium + nitric acid → magnesium nitrate + hydrogen											
	Complete the	following tab	ole about s	ome atoms	and ions.	The first	row has be	een done for	you.			
	Particle	Atom or ion	Atomic number			ber of tons	Number of neutrons	Number of electrons	Electro structu			
	19F-	ion	9	19)	9	10	10	2,8			
	²⁷ ₁₃ Al ³⁺											
	²⁷ / ₁₃ Al ³⁺	atom				19	20					
	²⁷ ₁₃ Al ³⁺	atom				19	20	18				
	What is the st	ructure type		sulfur	ng substand	ces. Tick	18 the correcter	et box.	sucro			
	What is the st	ructure type	potassium	sulfur dioxide	ng substand	buckmins	18 the correcter helium	ct box.				
	What is the st	ructure type		sulfur	ng substand	ces. Tick	18 the correcter	et box.				
	What is the st	ructure type	potassium	sulfur dioxide	ng substand	buckmins	18 the correcter helium	ct box.				
	what is the st	ructure type	potassium	sulfur dioxide	ng substand	buckmins	18 the correcter helium	ct box.	sucro			
	what is the st	ructure type	potassium	sulfur dioxide	ng substand	buckmins	18 the correcter helium	ct box.				

© www.CHEMSHEETS.co.uk 22-May-2018 Chemsheets GCSE 1151

	onducts ele		both forms of carbon. Explain these propert								
has a ver	y low boiling	gpoint	ilicon dioxide (SiO ₂) are (–78°C) while silicon dic structure and bonding ir	xide ha	as a ver	y high melting point (1					
		• • • • • • • • • • • • • • • • • • • •		••••							
to conduc	Aluminium metal is extracted from aluminium oxide by electrolysis. The aluminium oxide must be molte to conduct and melts at 2072°C. Explain, by discussing structure and bonding, why aluminium oxide mube molten to conduct and why it has a high melting point.										
••••	•••••	**********		***********	••••••						
	Strength	To develop	Area	Strength	To develop	Area	Strength	To develo			
vith care and thoroughnes		10 0010100	Can find PNE numbers in atoms	o a o ngan	10 0010.00	Why giant covalent have high mpt	- Cuongai	10 001010			
SPG			Can find PNE numbers in ions			Why giant covalent conduct or not		†			
ormulae			Identify structure type from formula			Why ionic have high mpt					
palanced equations			Why molecular substance has low mpt			Why ionic conduct or not					

22-May-2018 © www.CHEMSHEETS.co.uk **Chemsheets GCSE 1151**