A Level Mathematics

Specification: Pearson Edexcel Level 3 GCE 9MAO

https://qualifications.pearson.com/en/qualifications/edexcel-a-levels/mathematics-2017.html

Paper 1	Pure Mathematics 1	2 hours
Paper 2	Pure Mathematics 2	2 hours
Paper 3	Statistics and Mechanics	2 hours

You will be issued with the Pearson Edexcel Textbooks.

Students will be expected to use a Casio fx-991 Classwiz calculator.

Year 12	Year 13
Algebra & Functions	Algebra
Co-ordinate Geometry in the xy plane	Functions and graphs
Trigonometry	Sequences and Series including Binomial
Vectors	expansion
Differentiation	Trigonometry
Integration	Parametric equations
Exponentials and Logarithms	Differentiation
Data Collection, representation and	Integration
interpretation	Numerical methods
Correlation	Vectors
Probability	Regression, Correlation and Hypothesis testing
Statistical Distributions - Binomial	The Normal distribution
Hypothesis testing	Moments
Constant acceleration	Forces and Friction
Forces and Motion	Projectiles
Variable Acceleration	Kinematics

Course Overview

Expectations

You will have two teachers, both will set you written homework tasks every week to be handed in on a strict schedule, Mathematics is a practice heavy subject. You will have regular progress tests.

Support is available every lunchtime with a designated Mathematics teacher to help you achieve your potential. Each class has a designated Google classroom, on which lesson content and homework will be posted. There is also a year group revision classroom.

Useful Websites

https://www.physicsandmathstutor.com/ https://www.drfrostmaths.com/ https://www.madasmaths.com/ https://www.mathsgenie.co.uk/newalevel.html

SIXTH FORM

Algebra Transition Work to be completed - Extension questions are optional

Surds and rationalising the denominator

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.

•
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\overline{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Practice

1 Simplify.			Hint
$a^{\sqrt{45}}$	b	$\sqrt{125}$	One of the two
$e^{\sqrt{48}}$	d	$\sqrt{175}$	numbers you choose at the start
$e^{\sqrt{300}}$	f	$\sqrt{28}$	must be a square number.
2 Simplify.			Watch out!
2 Simplify. a $\sqrt{72} + \sqrt{162}$	b	$\sqrt{45}-2\sqrt{5}$	Check you have
	b d	$\sqrt{45} - 2\sqrt{5}$ $\sqrt{75} - \sqrt{48}$	

3 Expand and simplify. a $(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})$ b $(3 + \sqrt{3})(5 - \sqrt{12})$ c $(4 - \sqrt{5})(\sqrt{45} + 2)$ d $(5 + \sqrt{2})(6 - \sqrt{8})$

4 Rationalise and simplify, if possible.

$\frac{1}{\sqrt{5}}$	b	$\frac{1}{\sqrt{11}}$
$c \frac{2}{\sqrt{7}}$	d	$\frac{2}{\sqrt{8}}$
$e^{\frac{2}{\sqrt{2}}}$	f	$\frac{5}{\sqrt{5}}$
$\mathbf{g} \frac{\sqrt{8}}{\sqrt{24}}$	h	$\frac{\sqrt{5}}{\sqrt{45}}$

5 Rationalise and simplify.

a
$$\frac{1}{3-\sqrt{5}}$$
 b $\frac{2}{4+\sqrt{3}}$ **c** $\frac{6}{5-\sqrt{2}}$

Extend

6 Expand and simplify
$$(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})$$

7 Rationalise and simplify, if possible.

$$\mathbf{a} \frac{1}{\sqrt{9} - \sqrt{8}} \qquad \mathbf{b} \quad \frac{1}{\sqrt{x} - \sqrt{y}}$$

SIXTH FORM

Rules of indices

A LEVEL LINKS

Scheme of work: AS and A level Mathematics

1a. Algebraic expressions – basic algebraic manipulation, indices and surds

Key points

•
$$a^m \times a^n = a^{m+n}$$

$$\frac{a^m}{a} = a^{m-n}$$

- $a^{\overline{n}}$
- $(a^m)^n = a^{mn}$
- $a^0 = 1$
- $a^{\frac{1}{n}} = \sqrt[n]{a}$ i.e. the *n*th root of *a*

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

- $\bullet \qquad a^{-m} = \frac{1}{a^m}$
- The square root of a number produces two solutions, e.g. $\sqrt{16} = \pm 4$.

Practice

1 Evaluate.

		\mathbf{a} x^0	14 ⁰	b	3°	c	5 ⁰	d
2	Evaluate.	a $16^{\frac{1}{4}}$	$49^{\frac{1}{2}}$	b	$64^{\frac{1}{3}}$	c	$125^{\frac{1}{3}}$	d
3	Evaluate.	a $16^{\frac{3}{4}}$	$25^{\frac{3}{2}}$	b	$8^{\frac{5}{3}}$	c	$49^{\frac{3}{2}}$	d

SIXTH FORM

A LEVEL TRANSITION WORK

4 Evaluate.

5

6

7

8

Evaluate.						
	a 5^{-2} 6^{-2}	b	4-3	c	2 ⁻⁵ d	
Simplify.						
	$\frac{3x^2 \times x^3}{2x^2}$		$\frac{10x^5}{2x^2 \times x}$			
	a $2x^2$	b	$2x^2 \times x$			
	$\frac{3x \times 2x^3}{2x^3}$		$\frac{7x^3y^2}{14x^5y}$			
		u				
	$\mathbf{e} \frac{y^2}{y^{\frac{1}{2}} \times y}$		$\frac{c^{\frac{1}{2}}}{c^2 \times c^{\frac{3}{2}}}$			
	$e^{y^2 \times y}$	f	$c^2 \times c^{\frac{3}{2}}$			
Evaluate.	1		2		1	
	a $4^{-\frac{1}{2}}$	b	$27^{-\frac{2}{3}}$	c	$9^{-\frac{1}{2}} \times 2^{3}$	
	1		$\left(\frac{9}{16}\right)^{-\frac{1}{2}}$		$(27)^{-\frac{2}{3}}$	
	d $16^{\frac{1}{4}} \times 2^{-3}$	e	$\left(\frac{16}{16}\right)$	f	$\left({64}\right)$	
Write the following	g as a single power of x .					
	$\frac{1}{x}$	b	$\frac{1}{x^7}$	с	$\sqrt[4]{x}$	
	a	U	1	t	1	
	$d \sqrt[5]{x^2}$	e	$\frac{1}{\sqrt[3]{x}}$	f	$\frac{1}{\sqrt[3]{x^2}}$	
		-		-		
Write the following without negative or fractional powers.						
	a x^{-3}	b	x^0	с	$x^{\frac{1}{5}}$	
	a ^x	U	л	ι		

 $x^{\frac{2}{5}}$

d

 $x^{-\frac{1}{2}}$ **f** $x^{-\frac{3}{4}}$

e

9 Write the following in the form ax^n . a $5\sqrt{x}$ b $\frac{2}{x^3}$ c $\frac{1}{3x^4}$ d $\frac{2}{\sqrt{x}}$ e $\frac{4}{\sqrt[3]{x}}$ Extend 10 Write as sums of powers of x. a $\frac{x^5+1}{x^2}$ b $x^2\left(x+\frac{1}{x}\right)$ c $x^{-4}\left(x^2+\frac{1}{x^3}\right)$

Completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Completing the square for a quadratic rearranges $ax^2 + bx + c$ into the form $p(x+q)^2 + r$
- If $a \neq 1$, then factorise using *a* as a common factor.

Practice

 1
 Write the following quadratic expressions in the form $(x + p)^2 + q$

 a $x^2 + 4x + 3$ b
 $x^2 - 10x - 3$

 c $x^2 - 8x$ d
 $x^2 + 6x$

 e $x^2 - 2x + 7$ f
 $x^2 + 3x - 2$

2 Write the following quadratic expressions in the form $p(x+q)^2 + r$ a $2x^2 - 8x - 16$ b $4x^2 - 8x - 16$ c $3x^2 + 12x - 9$ d $2x^2 + 6x - 8$

3 Complete the square.

a	$2x^2 + 3x + 6$	b	$3x^2 - 2x$
c	$5x^2 + 3x$	d	$3x^2 + 5x + 3$

Extend

4 Write $(25x^2 + 30x + 12)$ in the form $(ax + b)^2 + c$.

SIXTH FORM

Solving linear and quadratic simultaneous equations

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous

Key points

- Make one of the unknowns the subject of the linear equation (rearranging where necessary).
- Use the linear equation to substitute into the quadratic equation.
- There are usually two pairs of solutions.

Practice

Solve these simultaneous equations.

1	$y = 2x + 1$ $x^2 + y^2 = 10$	2	$y = 6 - x$ $x^2 + y^2 = 20$
3	$y = x - 3$ $x^2 + y^2 = 5$	4	$y = 9 - 2x$ $x^2 + y^2 = 17$
5	$y = 3x - 5$ $y = x^2 - 2x + 1$	6	$y = x - 5$ $y = x^2 - 5x - 12$

Rearranging equations

A LEVEL LINKS

Scheme of work: 6a. Definition, differentiating polynomials, second derivatives **Textbook:** Pure Year 1, 12.1 Gradients of curves

Key points

- To change the subject of a formula, get the terms containing the subject on one side and everything else on the other side.
- You may need to factorise the terms containing the new subject.

Practice

Change the subject of each formula to the letter given in the brackets.

1	$C = \pi d [d]$	2	P = 2l + 2w [w]	3	$D = \frac{S}{T}$ [T]
4	$p = \frac{q-r}{t} [t]$	5	$u = at - \frac{1}{2}t [t]$	6	V = ax + 4x [x]
7	$\frac{y-7x}{2} = \frac{7-2y}{3} [y]$	8	$x = \frac{2a - 1}{3 - a} [a]$	9	$x = \frac{b-c}{d} [d]$
10	$h = \frac{7g - 9}{2 + g} [g]$	11	e(9+x) = 2e + 1 [e]	12	$y = \frac{2x+3}{4-x} [x]$

13 Make *r* the subject of the following formulae.

Aa
$$A = \pi r^2$$
 b $V = \frac{4}{3}\pi r^3$ **c** $P = \pi r + 2r$ **d** $V = \frac{2}{3}\pi r^2 h$

14 Make *x* the subject of the following formulae.

$$\frac{xy}{a} = \frac{ab}{cd}$$
b

$$\frac{4\pi cx}{d} = \frac{3z}{py^2}$$

Extend

17 Make *x* the subject of the following equations.

$$\frac{p}{q}(sx+t) = x-1$$

$$\mathbf{b} \qquad \frac{p}{q}(ax+2y) = \frac{3p}{q^2}(x-y)$$